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This paper proposes an improved extended finite element method (XFEM) for modeling high temperature superconducting (HTS) 

tapes with multiple nearby geometrical interfaces. In regions near these interfaces, the magnetic vector potential approximation is 

enriched by incorporating multiple derivative discontinuous fields based on the partition of unity method such that the interfaces can 

be represented independent of the mesh. The support of a node or an element can be cut by several interfaces. This method results in 

the high accuracy in the approximation field and the derivative field. Numerical examples applied to the multilayer HTS tapes in 2D 

eddy current field involving level set based parts, error analysis and electromagnetic field computations are provided to demonstrate 

the utility of the proposed approach. 

 
Index Terms— Eddy current, high order enrichment function, nearby geometrical interfaces, XFEM. 

 

I. INTRODUCTION 

OR MANY electromagnetic devices, the complex 

components in structure contain large number of nearby 

geometrical interfaces. The basic structures of some examples 

are shown in Fig. 1, where (a) and (b) are the laminated iron 

cores in a transformer and a motor, (c) is the superconducting 

layers in a high temperature superconducting (HTS) cable, and 

(d) the magnetic particles in a magneto-rheological fluid. 
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Fig. 1.  Examples of electrical devices with multiple nearby interfaces: (a) 

laminated iron core in a transformer, (b) laminated iron core in a motor, (c) 

superconducting layer in a HTS cable, and (d) magnetic particles in a 

magneto-rheological fluid. 

 

Meshless method [1] is an answer to the meshing issue, as 

the connectivity is obtained by means of domains of influence 

that are not mesh based. However, the computational cost of 

this approach is still higher than that of conventional finite 

element method (CFEM), and the parameters involved in the 

formulation are not always easy to select a priori. 

The extended finite element method (XFEM) [2-6] with a 

single level set function to construct the enrichment function 

can be very effective for the case when the elements across the 

boundary of two different media contain only one interface. 

However, when the elements contain more interfaces due to 

the small sizes of media, such as the laminated cores in 

transformers and motors and the superconducting layers in 

HTS cables, it would encounter many numerical difficulties. 

To overcome these limitations, an improved XFEM is 

proposed. 

II. IMPROVED XFEM WITH MULTIPLE HIGH ORDER ENRICH-

MENT FUNCTIONS AND LOW ORDER MESHING ELEMENT 

Fig. 2 shows a portion of a mesh with quadrilateral elements, 

where Γ is the interface, which does not necessarily coincide 

with the mesh, and ni are the enrichment nodes (circles) whose 

supports ωi are cut by the interface. The elements cut by the 

interface are known as the enrichment elements, and the 

elements with enrichment nodes which are not cut by the 

interface are known as the blending elements. ωi=supp(ni) is 

the support of node ni, which consists of the union of all 

elements connected to node ni. 
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Fig. 2.  Interface Γ in a non-conforming mesh. 

 

The improved XFEM magnetic vector potential 

approximation can be expressed by 
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where ui and aj are nodal unknowns, Ni(x) and Nj(x) the finite 

element shape functions, ψ(x) is the enrichment function, 

which contains the desirable discontinuous properties, and J
e
 

the set of enrichment nodes. k = 1, 2, … , N which is the 

indexing of the interface Γk. x is the coordinate variable. When 

multiple interfaces cross the support of node I or element I as 

in Fig. 3 in 2D, multiple level set functions and enrichment 

functions have to be considered in order to preserve the 

convergence of the approximation. 
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(a)                                         (b) 
Fig. 3.  Two types of mesh with nearby interfaces Γ1, Γ2, and Γ3: (a) support of 

node I, and (b) element I. 

 

An elegant methodology to construct the enrichment 

function is the level set method (LSM). 

LSM is based upon the idea of representing the interface as a 

zero level set curve of a higher-dimensional function φ(x, t). In 

this paper, only the static interfaces are considered. In the case 

with several interfaces Γ(k) (k = 1, 2, … , N) as shown in Fig. 3, 

one function for each associated region Ω1(k) can be defined as 
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The sign is arbitrarily chosen negative in Ω1 (inside Γ) and 

positive in Ω2 (outside Γ). 

Finally, the level set function can be obtained by 
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In this work only the weak discontinuity cases will be 

considered because nearly all the field approximations are 

continuous in the electromagnetic field. The enrichment 

function ψ(x) proposed by [7] can be used. 
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The enrichment elements must be subdivided where each 

sub-element contains only one material because of the 

numerical integration. Let φi and φj denote the nodal level set 

values at two vertices xi and xj of an element in Fig. 2. 

Therefore, the intersection point xp can be calculated by 
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Indeed, if only one level set function and one enrichment 

function are considered for node I or element I, the 

approximation is not rich enough to make derivative field 

jump along the interfaces. A node or an element has to be 

enriched with respect to all the interfaces crossing its support 

or itself. Therefore, the separate level set functions and 

enrichment functions for each interface have to be defined. 

Each interface is associated with a single level set function. 

III. NUMERICAL EXAMPLES 

2D examples containing HTS tapes placed in a circular 

arrangement is shown in Fig. 4(a) and Fig. 5(a). The voltage 

loads are applied on HTS tapes, while the magnetic potentials 

of the outer boundaries of the air are zero. Fig. 4(b) and Fig. 

5(b) show the meshes by using XFEM. Fig. 6 shows the 

current distribution in HTS tapes in example 2. The detail 

results will be presented in the full paper. 
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Fig.  4. Example 1: (a) model, (b) XFEM mesh. 
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Fig.  5. Example 2: (a) model, (b) XFEM mesh. 

 

 
Fig.  6. Current distribution in HTS tapes in example 2. 

IV. CONCLUSION 

In this paper, a new improved XFEM is presented by using 

multiple enrichment functions and level sets based parts. Each 

interface is associated with a single level set function and ad-

ditional degrees of freedom are introduced for nodes whose 

support is cut by more than one interface. This method is 

mainly used for the meshing elements containing more inter-

faces due to the small sizes of media. 
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